equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.






Flambagem

Euler também é conhecido na engenharia pela fórmula de flambagem sob carga crítica de um suporte ideal, calculada a partir do seu comprimento e rigidez à flexão:[49]


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde:

  • F = força máxima ou crítica (carga vertical da coluna);
  • E = módulo de elasticidade;
  • I = momento de inércia de área;
  • L = comprimento sem suporte da coluna;
  • K = fator de comprimento de coluna efetiva, no qual os valores dependem das condições da extremidade do suporte da coluna, como abaixo:
Para ambas as extremidades presas (articulações, livres para rotação), K = 1,0.
Para ambas as extremidades fixadas, K = 0,50.
Para uma das extremidades fixas e a outra extremidade livre para rotação, K = 0,699…
Para uma das extremidades fixas e a outra livre para mover de forma lateral, K = 2,0.
  • K L é o comprimento efetivo da coluna.












Na física, as equações de Maxwell no espaço-tempo curvo governam a dinâmica do campo eletromagnético no espaço-tempo curvo [1] (onde a métrica não pode ser a métrica de Minkowski) ou quando se usa um sistema , não necessariamente cartesiano, arbitrário de coordenadas. Estas equações podem ser vistas como uma generalização das equações de Maxwell, que são normalmente formuladas nas coordenadas locais[nota 1] do espaço-tempo plano. Entretanto porque a relatividade geral dita que a presença de campos eletromagnéticos (ou energia/matéria em geral) induzem curvatura do espaço-tempo, as equações de Maxwell no espaço-tempo plano devem ser vistas como uma aproximação.

Campo electromagnético

O campo electromagnético[2] é um tensor antissimétrico covariante de classe 2,[3] que pode ser definido em termos de potencial electromagnético por


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Para verificar que esta equação é invariante, podemos transformar as coordenadas (tal como descrito no tratamento clássico de tensores)


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Esta definição implica que o campo electromagnético satisfaz


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

que incorpora a lei de indução de Faraday e lei de Gauss[4] para o magnetismo. Isto é demonstrado por


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Embora parece ter 64 equações em Faraday-Gauss, elas realmente reduzem-se a apenas quatro equações independentes .[5] Utilizando a antisimetria do campo electromagnético pode-se reduzir a uma identidade (0 = 0) ou tornar redundante todas as equações, com excepção para aqueles com λ, μ, ν = 1,2,3; ou 2,3,0; ou 3,0,1; ou 0,1,2.

A equação de Faraday-Gauss é por vezes escrita


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde o ponto e vírgula indica uma derivada covariante, vírgula indica uma derivada parcial, e colchetes indicam anti-simetrização (Veja Gregorio Ricci-Curbastro).[6] A derivada covariante do campo


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


////// eletromagnético é

onde Γαβ γ é o símbolo de Christoffel que é simétrico em seus índices mais baixos.









De acordo com o (puramente matemático) teorema de divergência de Gauss, o fluxo elétrico através da superfície de contorno ∂Ω pode ser reescrito como:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

\oiint 


A versão integral da equação de Gauss pode ser reescrita como:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Como Ω é arbitrário (por exemplo, uma pequena bola arbitrária com centro arbitrário), isso é satisfeito se e somente se, o integrando for zero. Esta é a formulação de equações diferenciais da equação de Gauss até um rearranjo trivial.

Da mesma forma, reescrever o fluxo magnético na lei de Gauss para o magnetismo em forma integral dá:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

\oiint 


que é satisfeito por


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////




MECÂNICA GRACELI GENER. - QUÂNTICA DIMENSIONAL TENSORIAL RELATIVISTA DE CAMPOS [672]

Comentários